首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   727篇
  免费   54篇
  2021年   6篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   23篇
  2013年   36篇
  2012年   49篇
  2011年   41篇
  2010年   17篇
  2009年   17篇
  2008年   42篇
  2007年   49篇
  2006年   39篇
  2005年   38篇
  2004年   56篇
  2003年   42篇
  2002年   37篇
  2001年   22篇
  2000年   21篇
  1999年   8篇
  1998年   13篇
  1997年   6篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   11篇
  1985年   11篇
  1984年   6篇
  1983年   6篇
  1982年   9篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1977年   6篇
  1976年   7篇
  1975年   6篇
  1973年   6篇
  1971年   5篇
  1970年   10篇
  1969年   3篇
  1968年   3篇
排序方式: 共有781条查询结果,搜索用时 62 毫秒
1.
2.
3.
4.
Swallowtail butterflies of the tribe Papilionini number about 225 species and are currently used as model organisms in several research areas, including genetics, chemical ecology and phylogenetics of host plant utilization and mimicry, mechanisms of speciation, and conservation. We have inferred phylogenetic relationships for a sample of 18 species of the genus Papilio (sensu lato) and five outgroup taxa by sequencing two stretches of mitochondrial DNA that correspond to segments 12886-13370 and 12083-12545 of Drosophila melanogaster mitochondrial DNA and consist of sections of the genes for the large ribosomal RNA and subunit 1 of NADH-dehydrogenase. Our data support the monophyly of Papilio and, within it, of several traditionally recognized subgroups. Species belonging to groups that utilize primarily Rutaceae as larval foodplants form two clusters, corresponding to Old World and American taxa, respectively, while two previously recognized clades-of American and South Asian-Austronesian origin-whose members were known to feed mostly on Lauraceae and Magnoliaceae, are observed to form a clade. The sister group of Papilio is found to be the South Asian genus Meandrusa, which also happens to feed on Lauraceae. The latter plant family is therefore the probable larval host of the ancestor Papilio and the shift to Rutaceae (which four-fifths of extant Papilio species use as foodplants) is more likely to have occurred only after the initial diversification of the genus.  相似文献   
5.
6.

Background

Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection.

Results

A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted.

Conclusion

The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being developed will most probably allow for a more efficient selection in this species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1266-1) contains supplementary material, which is available to authorized users.  相似文献   
7.
E Luquet  J-P Léna  C Miaud  S Plénet 《Heredity》2015,114(1):69-79
Variation in the environment can induce different patterns of genetic and phenotypic differentiation among populations. Both neutral processes and selection can influence phenotypic differentiation. Altitudinal phenotypic variation is of particular interest in disentangling the interplay between neutral processes and selection in the dynamics of local adaptation processes but remains little explored. We conducted a common garden experiment to study the phenotypic divergence in larval life-history traits among nine populations of the common toad (Bufo bufo) along an altitudinal gradient in France. We further used correlation among population pairwise estimates of quantitative trait (QST) and neutral genetic divergence (FST from neutral microsatellite markers), as well as altitudinal difference, to estimate the relative role of divergent selection and neutral genetic processes in phenotypic divergence. We provided evidence for a neutral genetic differentiation resulting from both isolation by distance and difference in altitude. We found evidence for phenotypic divergence along the altitudinal gradient (faster development, lower growth rate and smaller metamorphic size). The correlation between pairwise QSTs–FSTs and altitude differences suggested that this phenotypic differentiation was most likely driven by altitude-mediated selection rather than by neutral genetic processes. Moreover, we found different divergence patterns for larval traits, suggesting that different selective agents may act on these traits and/or selection on one trait may constrain the evolution on another through genetic correlation. Our study highlighted the need to design more integrative studies on the common toad to unravel the underlying processes of phenotypic divergence and its selective agents in the context of environmental clines.  相似文献   
8.
9.
Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.1,2 Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.3 BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.4 A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.5-8 The platform is installed in an open-access mode at EMBL Grenoble and has supported many scientists from academia and industry to accelerate protein complex research projects.  相似文献   
10.
Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号